
Mexml
Machine Edition program analysis and reporting

through the inspection of XML project files

Joalah Designs LLC

The Problem

 GE IP’s Machine Edition enables you to create complex PLC

programs with 1000’s of variables

 But it has few quality assurance or code metric tools

 The only “real” tool is the Database Report which only

provides “canned” reports that can’t be exported from ME

 Some things these reports can’t do include listing:

o Declared I/O variables that are not used

o Program blocks that are not called

o Variables that are read but not set

o Variables that have overlapping addresses

In Perspective

With program sizes like these, it is impossible to manually

keep track of every block or variable’s usage.

Program Block Count Variable Count

Program “A” 85 9,800

Program “B” 106 9,400

Program “C” 140 16,300

Program “D” 116 15,000

Program “E” 112 12,700

The following block and variable counts were observed in a

series of real-world PLC projects:

The Solution: Mexml

 Mexml reads XML files exported from Machine Edition

and builds up a view of variable and program block

usage. Two types of reports can be generated from this

information

 Program Structure reports describe the overall structure

of various aspects of the program itself

 Variable Usage reports record if/how a particular

varibable was used within the program

 The reports can be generated in either plain text or CSV

formats, allowing for easily incorporating results into

documentation or using them for further processing

Program Structure Reports

Reports on the structure of the program and includes items such
as:

 Program block usage (used/not used)

 Program block dependency and call order

 Variables that are mapped to the same address

 Variables with overlapping addresses

 Variables in Function Blocks that are global to the FB

 Program instructions that access addresses outside of a
variable’s size

 Chains of variables aliased to parents

 Text representation of Ladder Logic and Structured Text
instructions

Variable Usage Reports

Reports if/how a variable was used and can be generated using
any combination of:

Access – Read, Write, Input Scan, Output Scan etc.

Memory – %I, %Q, %M, %R, Symbolic etc.

Type – Local, Global, Input, Output etc.

Name – As described by a regular expression

Address – As described by a regular expression

Description – As described by a regular expression

For example, combining Access and Memory criteria, or Type,
Name and Address criteria.

Variable Usage Report Example:

Reports where and how a variable has been accessed:

 Access
Name Type Address 1234567 Description
----------------- ---- ------- ------- ----------------
...
Number1 DINT %R00021 IR----- This is number 1
Number2 DINT %R00122 -RW---- This is number 2
Data_5 INT %R00154 -R----- Data number 5
Data_6 INT %R00755 -RW---Q Data number 6
...

Where the Access columns are:

1. Is part of an Input Scan (I)
2. Has been explicitly Read (R)
3. Has been explicity Written (W)
4. Was an array element that was read with a calculated index (S)
5. Was an array element that was written with a caclulated index (X)
6. Was accessed as a part of a Function Block (B)
7. Is part of an Output Scan (Q)

Program Structure Report Example:
Mapped Addreses

List the variables mapped to the same addresses:

############################
 Mapped Address variables
############################
 %M00105 WORD InputAsWord
 %M00105
 %M00106 BOOL LostKeyBit
 %M00107
 %M00108 BOOL OnFireBit
 %M00109 BOOL SinkHoleBit
 %M00110
 %M00111
 %M00112 BOOL MorningBit
 %M00113
 %M00114
 %M00115
 %M00116
 %M00117
 %M00118
 %M00119
 %M00120

Program Structure Report Example:
I/O Listings

List the hardware I/O to variable mappings:

Slot Card
---- ----

 ...
 4 IC693MDL241
 Main %I00001 16 BOOL Reference Address
 %I00001 BOOL RSplines Reticulate the splines
 %I00002 BOOL Starvation The cafeteria isn't open
 %I00003 BOOL LostKey Can't find the operating key
 %I00004 BOOL SuperPowers Super powers have been granted
 %I00005 BOOL OnFire Equipment is on fire
 %I00006 BOOL SinkHole Sink hole has opened up beneath room
 %I00007 BOOL LotteryWin Operator has won the lottery
 %I00008 BOOL I00008
 %I00009 BOOL PumpA_Running
 %I00010 BOOL PumpB_Running
 %I00011 BOOL ControlRmEmpty No operators in the control room
 ...

Some benefits/uses of Mexml

 Ensure that all variables are initialized

 Ensure that all I/O points have been utilized

 Ensure that data tranfers don’t spill over their bounds

 List the variables that make up the external interface to

a set of program blocks

 List the program block dependency and call order

 List all the Boolean variables mapped onto Word data

types

 List the variables in every EGD

Requirements

 Mexml requires the .Net 4.0 client library, and runs on

either 32 or 64 bit Windows systems, (but runs as a 32

bit process on 64 bit systems)

 Machine Edition Versions 7.0, 8.0 or 8.5

NOTE: Not all features work with 90-30 projects that have been imported into

Machine Edition. Most notable is that these projects retain an incompatible

EGD and Hardware file format.

Licensing

 Mexml requires a license before it can be used

 Trial or Standard licenses are available

 A free Trial license is supplied with Mexml, but limits the

programs functionality

 Licenses do not expire and can easily be transferred

from one computer to another

 A significant update in the Mexml version will require a

license renewel only in order to use the new version

The bottom line

Mexml gives you the power to better track and report on

many important aspects of your PLC projects, that until

now have been hidden from you in a sea of raw data.

Whether it’s by helping you document existing systems, or

ensuring that you have accounted for all the resources in a

new program, Mexml enhances your productivity and helps

you better validate your projects.

Better productivity and validation means that projects are

completed sooner, with fewer mistakes and of course

reduced costs.

Contact Us

For more information regarding Mexml please eMail Joalah

Designs at:

 Info@JoalahDesigns.com

Suggestions and requests are also welcome!

